Mark Scheme (Results)

Summer 2017

Pearson Edexcel International Advanced Level In Biology (WBIO4) Paper 01 The Natural Environment and Species Survival

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code WBI04_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- \quad There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Answer		Mark
$\mathbf{1 (a)}$	A -	electrons	hydrogen ions

Question Number	Answer		Mark
$\mathbf{1 (b)}$	C - photolysis The only correct answer is C \boldsymbol{A} is not correct because water is split in the presence of light which is photolysis, condensation joins molecules	B is not correct because water is split in the presence of light which is photolysis, hydrolysis uses water to split molecules \boldsymbol{D} is not correct because water is split in the presence of light releasing electrons, reduction involves gaining electrons	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 (c)}$	1. for \{photophosphorylation / phosphorylation of ADP\} / eq ; 2. idea that electrons move along \{electron carrier system / eq\} ; 3. H^{+}accumulate in the thylakoid (space) / eq; 4. H^{+}release energy (for phosphorylation) as they move (into the stroma) through ATP synthase (channel) /eq ;	3 Accept idea that there is a proton gradient between the thylakoid space and the stroma	

Question Number	Answer	Additional Guidance	Mark
1(d)	1. ATP and reduced NADP used in the conversion of GP into GALP / eq ; 2. ATP provides the energy for the conversion of GP into GALP ; 3. idea that the reduced NADP provides $\{$ hydrogen / reducing power / electrons / eq \} ; 4. idea that ATP is used to regenerate RuBP ;	Accept NADPH throughout, TP for GALP 1 Piece together 3 NB If a candidate scores mp 2 and 3 they will get 3 marks 4 Accept phosphorylation of RuBP	(3)

Question Number	Answer	Additional Guidance	Mark
2(a)	1. broken down by \{enzymes / amylase / carbohydrases\} (from microorganisms) ; 2. by hydrolysis (of glycosidic bonds) ; 3. idea that \{bacteria / fungi / microorganisms\} are involved ;	1 Do not accept cellulase	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 (b)}$	1. $780-180 / 600 ;$	Correct answer with no working gains full marks	
	2. $(600 \div 780=) 76.92 / 76.9 / 77(\%) ;$	2 ecf if $900-180$ is given and divided by $900=80(\%)$ Ignore + or - signs	

Question Number	Answer	Additional Guidance	Mark
2(c)	1. cellulose made of β glucose and starch is made of a glucose ; 2. cellulose has $1-4$ glycosidic bonds and starch has $1-4$ and $1-6$ glycosidic bonds / eq ; 3. cellulose has alternating inverted glucoses but starch does not / eq ;	Do not piece together	
4. cellulose is a \{straight / unbranched\} chain (of glucoses) but starch has \{amylopectin / branches\} / eq ;		(2)	

Question Number	Answer	Additional Guidance	Mark
2(d)	1. for \{strength / support\} ; 2. for \{waterproofing / impermeable to water / eq\} ;		

Question Number	Answer	Additional Guidance	Mark
3(b)(i)	1. P.aurelia start to increase in number sooner / eq ; 2. P. aurelia grow faster / eq ; 3. P. aurelia increase in number for a longer period of time / eq ; 4. P. aurelia produce \{more / a greater increase in number of / eq \} organisms;	NB All mark points must be comparative Accept converse throughout Ignore any references to time or number throughout 3 Accept P. aurelia plateaus later 4 Accept more growth	(3)

Question Number	Answer	Additional Guidance	Mark
3(b)(ii)	$\underline{\text { P. aurelia }}$	Accept numbers did not	
	1. lower numbers / slower rate ; P. caudatum level off		(2)

Question Number	Answer	Additional Guidance	Mark
3(b)(iii)	1. idea that there are greater numbers of each species when cultured separately ;	1 Accept converse numbers quoted for both species	
2. competition between species for \{bacteria / food\} ; 3. idea that two species cannot coexist if they share the same niche ;	2Accept P. aurelia outcompeted P. caudatum for bacteria / food $\}$	(3)	

Question Number	Answer	Additional Guidance	Mark
4(a)	1. idea that cellulose molecules lie parallel with each other ; 2. cellulose molecules joined by hydrogen bonds (to form microfibrils) ; 3. idea that (layers of) microfibrils criss-cross with each other ; 4. idea of a \{ matrix / pectin / pectate / hemicellulose \} ; 5. credit $\{$ secondary thickening / lignification / middle lamella \};	2 Ignore microfibers / myofibres 3 Accept net-like structure / mesh Do not accept myofibres / microfibres 5 Accept contain lignin / suberin	(3)

Question Number	Answer	Additional Guidance	Mark
4(b)(i)	1. idea that the seaweeds occupy different (overlapping) regions up the seashore ; 2. idea that the \{seaweeds found higher up the seashore / F. spiralis\} have thicker cell walls ; 3. idea that \{seaweeds higher up the shore / F. spiralis\} \{will be / can survive\} out of the water for longer ; 4. idea that the thicker cell walls will help to \{prevent dehydration / conserve water\} ; 5. idea that competition exists between seaweeds ; 6. for \{space / light / anchor points / eq\} ;	NB Accept algae or plants throughout 1 Accept zonation / description of range where all four species are found 2 Accept converse / F. serratus further from the sea 3 Accept converse / F. serratus 4 Accept converse Ignore osmosis	(4)

Question Number	Answer	Additional Guidance	Mark
*4(b)(ii)	QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence 1. idea that the \{two seashores / transects\} should have similar \{abiotic factors / (relevant) named abiotic factor \} ; 2. reference to using a (belt / line) transect ; 3. idea that seaweeds are sampled at regular intervals (along the transect) ; 4. idea of \{recording / counting / identifying / eq\} which seaweeds are present; 5. credit an indication of how seaweed (abundance) is measured; 6. more than one \{transect / eq\} used ; 7. credit an indication of how results are \{recorded / manipulated\} ;	QWC emphasis on clarity of expression 1 e.g. substrate, incline, aspect Accept \{abiotic factors / (relevant) named abiotic factor \} measured 3 Accept systematic sampling 5 e.g. using a quadrat, touching the transect, percentage cover, ACFOR scale 6 Ignore repeat the investigation 7 e.g. graph of abundance against height of seashore, diagram similar to one in the question, indication of a calculation	(6)

Question Number	Answer	Additional Guidance	Mark
5(a)	QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence 1. idea that \{components / named component \} are host cell components ; Proteins: 2. reference to translation (of viral RNA) ; 3. idea that RNA attaches to ribosomes ; 4. credit details of translation ; 5. peptide bonds form between (adjacent) amino acids; Poliovirus RNA: 6. idea that (RNA) nucleotides line up along the (poliovirus) RNA to make the template RNA ; 7. idea that (RNA) nucleotides then line up along the template RNA in order to make the (poliovirus) RNA ; 8. credit details of how nucleotides join together ;	QWC emphasis on logical sequence 1 Accept e.g. amino acid 3 Accept mRNA 4 e.g. tRNA carries a specific amino acid / two tRNAs bind to the (viral) mRNA NB If no reference to a template strand is given for either mp 6 or 7, award 1 mark 8 e.g. formation of phosphodiester bonds / RNA polymerase	(6)

Question Number	Answer	Additional Guidance	Mark
5(b)(i)	1. (artificial) idea of human intervention ; 2. (active) stimulation of (primary) immune response / description of activation of lymphocyte involvement ; 3. (immunity) resulting in \{memory cells / long-lasting protection $/$ description of secondary immune response\};	1 e.g. injection of vaccine, given the \{vaccine / antigen\}	

Question Number	Answer	Additional Guidance	Mark
5(b)(ii)	1. virus needs to be inactivated so that it cannot cause disease (polio) ; 2. idea that there are three different antigens; 3. so all three types of antibody have to be produced ; 4. (therefore) all three types of memory cells have to be produced ; 5. credit details of primary immune response that results in the production of memory cells ; 6. idea that the vaccine will result in (long term) immunity to all three strains ; 7. idea that a vaccine will result in antibodies being produced \{quickly / in high numbers / eq\} on infection with polio virus ;	1 Allow not infected 5 e.g. macrophages present antigen to T helper cells, activated B cells form B memory 7 Accept idea that if all the antigens are not included in the vaccine a primary response would have to be stimulated and person would get sick	(4)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{6 (a)}$	1. GM salmon will be longer and heavier ;	Accept converse $\mathbf{1}$ Piece together	
	2. by $\{28 \mathrm{~cm}$ (longer) $/ 1.7 \mathrm{~kg}$ (heavier) $\} ;$	$\mathbf{2}$ e.g. $1.8 \times / 1.85 \times / 84.8 \%$ (longer), $2.3 \times / 130 \%$ (heavier)	(2)

Question Number	Answer	Additional Guidance	Mark
6(b)(i)	1. 1300-100 / 1200 ; 2. 18 - $2 / 16$; 3. $(1200 \div 16=) 75$ g month $^{-1}$;	Correct answer with no working gains full marks 3 no ecf if both mp 1 and 2 are incorrect NB bald answer of $\{66.7 / 67\}$ g month ${ }^{-1}$ gains two marks	(3)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{6 (b) (i i)}$	Line drawn should start \{at same point /above\} the Atlantic salmon and end at 3000g at 18 months;	Do not accept lines extrapolated back to zero Do not accept a line that reaches 3000 before 16 months	(1)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{6 (b) (\text { iii) }}$	1. idea of \{hatching the salmon from eggs / using newborn fish\} ; 2. idea of using the same \{conditions / named condition\} as the other salmon were grown in;	2 e.g. temperature	
3. idea of weighing the salmon at intervals (over this time period); 4. idea of using several salmon so that a mean can be calculated $;$	3 Accept subtracting mass at start from mass at end to calculate the increase 4 Ignore repeating the investigation	(3)	

Question Number	Answer	Mark
$\mathbf{6 (c) (\mathbf { i) }}$	\mathbf{B} gel electrophoresis	
	The only correct answer is B	
	\boldsymbol{A} is not correct because dendrochronology is the study of tree growth rings	
\boldsymbol{C} is not correct because PCR amplifies the number of DNA molecules		
\boldsymbol{D} is not correct because proteomics looks at proteins		

Question Number	Answer	Additional Guidance	Mark
$\mathbf{6 (c) (i i)}$	Any two from :	Ignore fragments / blobs /	
	different pattern of bands ; different position of bands ; different number of bands ; different \{size / width / eq\} of bands ;		
			(2)

Question Number	Answer	Mark
$\mathbf{7 (a) (\mathbf { i })}$	D - virus-infected host cell	
	The only correct answer is D	
	\boldsymbol{A} is not correct because B cells bind to antigen and present it to themselves	
\boldsymbol{B} is not correct because plasma cells produce antibody		
C is not correct because T helper cells produce cytokines to activate the T killer cells		

Question Number	Answer	Additional Guidance	Mark
7(a)(ii)	1. to increase the number of T killer cells ; 2. so that T killer cells $\{$ are antigen-specific /will only bind to (specific) infected host cells \} ; 3. so that (host-)infected cells can be destroyed faster ;	2 Accept will only destroy (specific) infected host cell Ignore CD4 receptors 3 Accept infected cells destroyed quickly / more infected cells destroyed	(2)

Question Number	Answer	Additional Guidance	Mark
7(a)(iii)	1. release of \{ chemicals / enzymes / perforins \} (from T killer cells); 2. (enzymes cause the) lysis (of host-infected) cells / eq ;	1 Do not accept lysozymes	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{7 (b) (\mathbf { i })}$	1. macrophages present antigen to T helper cells;	1 Accept macrophages become APC to T helper cells $\mathbf{2 ~ e . g . ~ b i n d i n g ~ t o ~ C D 4 ~ a n t i g e n ~}$ on Thelper cells	
	2. credit detail of antigen presentation;	3 Accept T helper cells release cytokine to stimulate T killer cells	(2)

Question Number	Answer	Additional Guidance	Mark
7(b)(ii)	1. phagocytosis (of virus) / eq ; 2. (destruction of virus) with enzymes /eq ; 3. (enzymes breakdown) \{protein coat / envelope / genetic material / eq\} ;Ignore interferons Lysozyme	(3) Do not accept kill iruses	

Question Number	Answer		Additional Guidance	Mark
7(c)(i)			All correct $=2$ marks ;; 1 correct = 1 mark ;	(2)
	Parts of the cell	Line		
	Two poles of the cell	P		
	A chromosome and a pole	R		
	Two identical chromosomes	Q		

Question Number	Answer	Mark
7(c)(ii)	B 15 minutes The only correct answer is B \boldsymbol{A} is not correct because there is no change in the distance between chromosomes and the poles \boldsymbol{C} is not correct because the distance between chromosomes and the poles is already decreasing D is not correct because the distance between chromosomes and the poles has been decreasing for a while	(1)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{8 (a) (i)}$	idea that they could be examined at a later stage ;	Accept to prevent decomposition / to keep evidence Ignore to kill bacteria	(1)
Question Number Answer Additional Guidance Mark $\mathbf{8 (a) (i i)}$ 1. so that the \{maggots / flies\} could be identified / eq ; 2. (bear liver) used to provide (appropriate) food for the maggots /eq ; $\mathbf{1}$ Accept to determine the time it takes for the adult to develop $\mathbf{2}$ Accept nutrients (2)			

Question Number	Answer	Additional Guidance	Mark
8(a)(iii)	$21: 00$ (on 14th July) to $07: 45$ (on 15th July);		(1)

Question Number	Answer	Additional Guidance	Mark
8(a)(iv)	Any one difference from:		
time that the eggs were laid			
species of blow fly			
genotypes / genetic diversity / genetic make up / alleles			
metabolic rates			
development rate of egg			
temperature (ambient / each bear / body parts)			
length of life cycle ;	Do not accept genes		

Question Number	Answer	Additional Guidance	Mark
$\mathbf{8 (b) (i)}$	1. idea that time taken to hatch depends on \{metabolic reactions / respiration / rate of development / eq \};		
	2. increase in temperature increases rate of \{enzyme activity / metabolic reactions \}; 3. credit detail of how an increase in temperature increases rate of enzyme activity ;	2 Accept converse energetic collisions / enzyme- substrate complexes formed $/$ incease in kinetic energy Ignore denaturing Accept converse	(3)

Question Number	Answer	Additional Guidance	Mark
8(b)(ii)	1. idea that the scientists did not know how dark it was before blow flies stop laying eggs ; 2. idea that the body temperature drops after death ; 3. idea that the ambient temperature changes (between time of death and when the scientists measured it) ; 4. idea that \{there is a range of hatching times / do not know when the eggs were laid / there were different species of blow fly\} ;	3 Accept ambient temperature at time of death not known	(2)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{8 (c)}$	1. (idea that determining) time of death is influenced by a number of factors ; 2. gives a more accurate estimate of time of death / to narrow the time of death down / eq ;	2 Accept reliable, precise Ignore valid	(2)

